Понятие о множестве. Обозначение, запись и изображение числовых множеств Обычное множество

Что такое множество в математике? Математическое множество - это несколько отдельных элементов, рассматриваемых, как единое целое. Если обозначить такой элемент буквой a, а само множество - буквой А, то запись будет выглядеть следующим образом:

проговаривается эта запись так: a принадлежит А, или А содержит а, или а - элемент А.

Для перечисления элементов множества используются фигурные скобки - {}. То есть, например, множество, в котором а ∈ А, b ∈ A и c ∈ A, будет записываться в таком виде:

Виды множеств.

Пустые множества.

Пустое множество – это то множество, которое вообще не содержит никаких элементов. Обозначается оно цифрой 0 или специальным значком ∅.

Примером пустого множества может служить любое нелогичное понятие , противоречащее самому себе - «множество птиц, живущих на дне океана», или «множество деревьев на Луне». Поскольку оба множества лишены смысла и не отвечают реальности, то, следовательно, они являются пустыми. Скажем, количество деревьев на Луне – 0, поэтому «множество деревьев на Луне» будет пустым (не будет содержать ни одного элемента).

Равные множества.

Равные множества – это два или более множеств, состоящих из равных наборов элементов. Приведём пример. Скажем, все члены Вашей семьи находятся на кухне. Таким образом, Множество «Члены семьи на кухне» будет равно множеству «Члены семьи в квартире».

Если два множества - А и B - состоят из одинакового набора элементов, то они будут равны, то есть А = B. Элементы множеств могут перечисляться в любой последовательности, на результат это никак не влияет. Множество {a, b, c} можно с тем же успехом записать, как {a, c, b}, или {с, b, a}, или {b, c, a}.

Подмножества и надмножества.

Если множества А и B состоят из одинаковых элементов {a, b, c}, то А будет считаться подмножеством B, а B - надмножеством А. Записывается это следующим образом:

A ⊆ B, B ⊇ A.

Бывает так, что множество В содержит в себе каждый из элементов множества А, но в то же время в нем присутствуют и другие элементы, множеству А не принадлежащие. В этом случае множество В становится собственным надмножеством А, в то время как множество А становится собственным подмножеством В.

Иначе говоря, если А ⊆ В, но при этом А ≠ В, то А ⊂ В, В ⊃ А.

Теория множеств.

Множества. Пустое множество. Универсальное множество. Подмножества. Собственное подмножество. Способы задания множеств. Мощность множества. Равномощные множества. Конечные и счётные множества. Операции над множествами (объединение, пересечение, дополнение, разность, симметрическая разность). Законы алгебры множеств. Характеристические функции. Декартово произведение множеств. Отношения и свойства отношений. Функции на множествах.

Определение множества.

Множество - это совокупность определённых различаемых объектов, причём таких, что для каждого можно установить, принадлежит этот объект данному множеству или нет.

Множества обычно обозначаются заглавными латинскими буквами, а элементы множества - строчными. Элементами множеств могут быть любые объекты, например, числа, символы, слова, объекты реального мира. В частности, элементами множества могут быть другие множества.

Например:

A = { a, b, c } - множество A состоящее из 3 элементов

N = { 1, 2, 3, … } - множество N целых чисел

Элементы множества являются уникальными, то есть, один и тот же элемент не может включаться в множество несколько раз (в отличие от векторов и мультимножеств). Считается, что при добавлении в множество элемента, который в нем уже присутствует, множество не меняется.

Порядок записи элементов множества не является существенным (в отличие от записи элементов векторов, где порядок важен).

Таким образом, множества считаются равными, если они состоят из одних и тех же элементов.

Если некоторый объект является элементом множества , то этот факт записывается следующим образом: и читается «x принадлежит А». Аналогично, если элемент не является элементом множества , используется запись («y не принадлежит А»).

Пустое множество – это множество, не содержащее элементов. Пустое множество может быть обозначено с использованием фигурных скобок: = { }. Однако, множество B = { } не является пустым: это множество, содержащее один элемент, который является пустым множеством.

Универсальное множество Е – множество всех объектов, рассматриваемых в данной задаче.

Конечные и бесконечные множества. Если количество элементов множества конечно (то есть существует натуральное число, равное количеству элементов множества), то такое множество называется конечным. В противном случае множество называется бесконечным.

Мощность множества или кардинальное число |A| (иногда card (A)). Мощность множества является обобщением понятия количества элементов на бесконечные множества. Для конечных множеств мощность равна количеству элементов множества.

Мощность пустого множества по определению равна нулю: .

Равномощные множества – это множества, между элементами которых можно установить взаимно однозначное соответствие.

Счётное множество – множество, равномощное множеству натуральных чисел.

Множество А называют подмножеством множества B (обозначается либо ) если все элементы, которые принадлежат множеству A, так же принадлежат и множеству B.

В этом случае B называют надмножеством A

Пустое множество является подмножеством любого множества.

Любое множество является подмножеством самого себя:

Любое множество является подмножеством универсального множества:

Два множества A и B равны тогда и только тогда, когда A является подмножеством B и B является подмножеством A.

Если множество A является подмножеством множества B, но A и B не равны, то в этом случае говорят что А является собственным подмножеством B (обозначается ).

Некоторые специальные множества : (Натуральные числа), (целые числа), (вещественные числа), (рациональные числа),

Множество – одно из основных понятий современной математики, используемое почти во всех ее разделах.

Во многих вопросах приходится рассматривать некоторую совокупность элементов как единое целое. Так, биолог, изучая животный и растительный мир данной области, классифицирует все особи по видам, виды по родам и т.д. Каждый вид является некоторой совокупностью живых существ, рассматриваемой как единое целое.

Для математического описания таких совокупностей и было введено понятие множества. По словам одного из создателей теории множеств – немецкого математика Георга Кантора (1845-1918), «множество есть многое, мыслимое нами как единое». Разумеется, эти слова не могут рассматриваться как математически строгое определение множества, такого определения не существует, поскольку понятие множества является исходным, на основе которого строятся остальные понятия математики. Но из этих слов ясно, что можно говорить о множестве натуральных чисел, множестве треугольников на плоскости.

Множества, состоящие из конечного числа элементов, называются конечными, а остальные множества – бесконечными. Например, множество китов в океане конечно, а множество рациональных чисел бесконечно. Конечные множества могут быть заданы перечислением их элементов (например, множество учеников в данном классе задается их списком в классном журнале). Если множество состоит из элементов , то пишут: . Бесконечные множества нельзя задать перечнем их элементов. Их задают обычно, указывая свойство, которым обладают все элементы данного множества, но не обладают никакие элементы, не принадлежащие этому множеству. Такое свойство называют характеристическим для рассматриваемого множества. Если - сокращенное обозначение предложения «элемент обладает свойством », то множество всех элементов, имеющих свойство , обозначают так: . Например, запись означает множество корней уравнения , т.е. множество . Может случиться, что не существует ни одного элемента, обладающего свойством (например, нет ни одного нечетного числа, которое делилось бы на 2). В этом случае во множестве нет ни одного элемента. Множество, не содержащее ни одного элемента, называется пустым. Его обозначают знаком .

Если элемент принадлежит множеству , то пишут: , в противном случае пишут: или . Множества, состоящие из одних и тех же элементов, называют равными (совпадающими). Например, равны множество равносторонних треугольников и множество равноугольных треугольников, так как это одни и те же треугольники: если в треугольнике все стороны равны, то равны и все его углы; обратно, из равенства всех трех углов треугольника вытекает равенство всех трех его сторон. Очевидно, что равны два конечных множества, отличающиеся друг от друга лишь порядком их элементов, например .

Всякий квадрат является прямоугольником. Говорят, что множество квадратов является частью множества прямоугольников, или, как говорят в математике, является подмножеством множества прямоугольников. Если множество является подмножеством множества , то пишут: или . Для любого множества верны включения и .

Из данных множеств и можно построить новые множества, применяя операции пересечения, объединения и вычитания. Пересечением множеств и называют их общую часть, т.е. множество элементов, принадлежащих как , так и . Это множество обозначают: . Например, пересечением двух геометрических фигур является их общая часть, пересечением множества ромбов с множеством прямоугольников – множество квадратов и т.д.

Объединением множеств и называют множество, составленное из элементов, принадлежащих хотя бы одному из этих множеств. В различных вопросах классификации используется представление множеств в виде объединения попарно непересекающихся подмножеств. Например, множество многоугольников является объединением множества треугольников, четырехугольников, ..., -угольников.

Если применять операции объединения и пересечения к подмножествам некоторого множества , то снова получатся подмножества того же множества . Эти операции обладают многими свойствами, похожими на свойства операций сложения и умножения чисел. Например, пересечение и объединение множеств обладают свойствами коммутативности и ассоциативности, пересечение дистрибутивно относительно объединения, т.е. для любых множеств и верно соотношение и т.д. Но в то же время у операций над множествами есть ряд свойств, не имеющих аналогов в операциях над числами. Например, для любого множества верны равенства и , верен второй закон дистрибутивности и т.д.

С помощью свойств операций над множествами можно преобразовывать выражения, содержащие множества, подобно тому как с помощью свойств операций над числами преобразовывают выражения в обычной алгебре. Возникающая таким путем алгебра называется булевой алгеброй, по имени английского математика и логика Дж. Буля (1815-1864), который занимался ею в связи с проблемами математической логики. Булевы алгебры находят многочисленные применения, в частности в теории электрических сетей.

Основной характеристикой конечного множества является число его элементов (например, множество вершин квадрата содержит 4 элемента). Если в множествах и поровну элементов, например если , , то из элементов этих множеств можно составить пары , причем каждый элемент из , равно как и каждый элемент из , входит в одну, и только одну, пару. Говорят, что в этом случае между элементами множеств и установлено взаимно-однозначное соответствие. И наоборот, если между двумя конечными множествами и можно установить взаимно-однозначное соответствие, то в них поровну элементов.

Г. Кантор предложил аналогичным образом сравнивать между собой бесконечные множества. Говорят, что множества и имеют одинаковую мощность, если между ними можно установить взаимно-однозначное соответствие. Сравнивая таким путем множества, составленные из чисел, Кантор показал, что существует взаимно-однозначное соответствие между множеством натуральных чисел и множеством рациональных чисел, хотя множество натуральных чисел является лишь частью множества рациональных чисел. Таким образом, в теории бесконечных множеств теряет силу утверждение, что «часть меньше целого».

Множества, имеющие ту же мощность, что и множество натуральных чисел, называют счетными. Таким образом, множество рациональных чисел счетно. Важнейший пример несчетного множества – множество всех действительных чисел (или, что то же самое, множество точек на прямой линии). Так как прямая линия непрерывна, то такую несчетную мощность называют мощностью континуума (от латинского continuum - «непрерывный»). Мощность континуума имеют множества точек квадрата, куба, плоскости и всего пространства.

В течение долгих лет математики решали проблему: существует ли множество, мощность которого является промежуточной между счетной и мощностью континуума. В 60-х гг. нашего века американский математик П. Коэн и чешский математик П. Вопенка почти одновременно независимо друг от друга доказали, что как существование такого множества, так и отсутствие его не противоречат остальным аксиомам теории множеств (подобно тому, как принятие аксиомы о параллельных или отрицание этой аксиомы не противоречат остальным аксиомам геометрии).

Множество - это совокупность объектов, рассматриваемая как одно целое. Понятие множества принимается за основное, т. е. не сводимое к другим понятиям. Объекты, составляющие данное множество, называются его элементами. Основное отношение между элементом a и содержащим его множеством A обозначается так (a есть элемент множества A ; или a принадлежит A , или A содержит a ). Если a не является элементом множества A , то пишут (a не входит в A , A не содержит a ). Множество можно задать указанием всех его элементов, причем в этом случае употребляются фигурные скобки. Так {a , b , c } обозначает множество трех элементов. Аналогичная запись употребляется и в случае бесконечных множеств, причем невыписанные элементы заменяются многоточием. Так, множество натуральных чисел обозначается {1, 2, 3, ...}, а множество четных чисел {2, 4, 6, ...}, причем под многоточием в первом случае подразумеваются все натуральные числа, а во втором - только четные.

Два множества A и B называются равными , если они состоят из одних и тех же элементов, т. е. A принадлежит B и, обратно, каждый элемент B принадлежит A . Тогда пишут A = B . Таким образом, множество однозначно определяется его элементами и не зависит от порядка записи этих элементов. Например, множество из трех элементов a , b , c допускает шесть видов записи:

{a , b , c } = {a , c , b } = {b , a , c } = {b , c , a } = {c , a , b } = {c , b , a }.

Из соображений формального удобства вводят еще так называемое "пустое множество", а именно, множество, не содержащее ни одного элемента. Его обозначают , иногда символом 0 (совпадение с обозначением числа нуль не ведет к путанице, так как смысл символа каждый раз ясен).

Если каждый элемент множества A входит во множество B , то A называется подмножеством B , а B называется надмножеством A . Пишут (A входит в B или A содержится в B , B содержит A ). Очевидно, что если и , то A = B . Пустое множество по определению считается подмножеством любого множества.

Если каждый элемент множества A входит в B , но множество B содержит хотя бы один элемент, не входящий в A , т. е. если и , то A называется собственным подмножеством B , а B - собственным надмножеством A . В этом случае пишут . Например, запись и означают одно и то же, а именно, что множество A не пусто.

Заметим еще, что надо различать элемент a и множество {a }, содержащее a в качестве единственного элемента. Такое различие диктуется не только тем, что элемент и множество играют неодинаковую роль (отношение не симметрично), но и необходимостью избежать противоречия. Так, пусть A = {a , b } содержит два элемента. Рассмотрим множество {A }, содержащее своим единственным элементом множество A . Тогда A содержит два элемента, в то время как {A } - лишь один элемент, и потому отождествление этих двух множеств невозможно. Поэтому рекомендуется применять запись , и не пользоваться записью .


Из огромного многообразия всевозможных множеств особый интерес представляют так называемые числовые множества , то есть, множества, элементами которых являются числа. Понятно, что для комфортной работы с ними нужно уметь их записывать. С обозначений и принципов записи числовых множеств мы и начнем эту статью. А дальше рассмотрим, как числовые множества изображаются на координатной прямой.

Навигация по странице.

Запись числовых множеств

Начнем с принятых обозначений. Как известно, для обозначения множеств используются заглавные буквы латинского алфавита. Числовые множества, как частный случай множеств, обозначаются также. Например, можно говорить о числовых множествах A , H , W и т.п. Особую важность имеют множества натуральных, целых, рациональных, действительных, комплексных чисел и т.п., для них были приняты свои обозначения:

  • N – множество всех натуральных чисел;
  • Z – множество целых чисел;
  • Q – множество рациональных чисел;
  • J – множество иррациональных чисел;
  • R – множество действительных чисел;
  • C – множество комплексных чисел.

Отсюда понятно, что не стоит обозначать множество, состоящее, к примеру, из двух чисел 5 и −7 как Q , это обозначение будет вводить в заблуждение, так как буквой Q обычно обозначают множество всех рациональных чисел. Для обозначения указанного числового множества лучше использовать какую-нибудь другую «нейтральную» букву, например, A .

Раз уж мы заговорили про обозначения, то здесь напомним и про обозначение пустого множества, то есть множества, не содержащего элементов. Его обозначают знаком ∅.

Также напомним про обозначение принадлежности и непринадлежности элемента множеству. Для этого используют знаки ∈ - принадлежит и ∉ - не принадлежит. Например, запись 5∈N означает, что число 5 принадлежит множеству натуральных чисел, а 5,7∉Z – десятичная дробь 5,7 не принадлежит множеству целых чисел.

И еще напомним про обозначения, принятые для включения одного множества в другое. Понятно, что все элементы множества N входят в множество Z , таким образом, числовое множество N включено в Z , это обозначается как N⊂Z . Также можно использовать запись Z⊃N , которая означает, что множество всех целых чисел Z включает множество N . Отношения не включено и не включает обозначаются соответственно знаками ⊄ и ⊅. Также используются знаки нестрогого включения вида ⊆ и ⊇, означающие соответственно включено или совпадает и включает или совпадает.

Про обозначения поговорили, переходим к описанию числовых множеств. При этом затронем лишь основные случаи, которые наиболее часто используются на практике.

Начнем с числовых множеств, содержащих конечное и небольшое количество элементов. Числовые множества, состоящие из конечного числа элементов, удобно описывать, перечисляя все их элементы. Все элементы-числа записываются через запятую и заключаются в , что согласуется с общими правилами описания множеств . Например, множество, состоящее из трех чисел 0 , −0,25 и 4/7 можно описать как {0, −0,25, 4/7} .

Иногда, когда число элементов числового множества достаточно велико, но элементы подчиняются некоторой закономерности, для описания используют многоточие. Например, множество всех нечетных чисел от 3 до 99 включительно можно записать как {3, 5, 7, …, 99} .

Так мы плавно подошли к описанию числовых множеств, число элементов которых бесконечно. Иногда их можно описать, используя все тоже многоточие. Для примера опишем множество всех натуральных чисел: N={1, 2. 3, …} .

Также пользуются описанием числовых множеств посредством указания свойств его элементов. При этом применяют обозначение {x| свойства} . Например, запись {n| 8·n+3, n∈N} задает множество таких натуральных чисел, которые при делении на 8 дают остаток 3 . Это же множество можно описать как {11,19, 27, …} .

В частных случаях числовые множества с бесконечным числом элементов представляют собой известные множества N , Z , R , и т.п. или числовые промежутки. А в основном числовые множества представляются как объединение составляющих их отдельных числовых промежутков и числовых множеств с конечным числом элементов (о которых мы говорили чуть выше).

Покажем пример. Пусть числовое множество составляют числа −10 , −9 , −8,56 , 0 , все числа отрезка [−5, −1,3] и числа открытого числового луча (7, +∞) . В силу определения объединения множеств указанное числовое множество можно записать как {−10, −9, −8,56}∪[−5, −1,3]∪{0}∪(7, +∞) . Такая запись фактически означает множество, содержащее в себе все элементы множеств {−10, −9, −8,56, 0} , [−5, −1,3] и (7, +∞) .

Аналогично, объединяя различные числовые промежутки и множества отдельных чисел, можно описать любое числовое множество (состоящее из действительных чисел). Здесь становится понятно, почему были введены такие виды числовых промежутков как интервал, полуинтервал, отрезок, открытый числовой луч и числовой луч: все они в купе с обозначениями множеств отдельных чисел позволяют описывать любые числовых множества через их объединение.

Обратите внимание, что при записи числового множества составляющие его числа и числовые промежутки упорядочиваются по возрастанию. Это не обязательное, но желательное условие, так как упорядоченное числовое множество проще представить и изобразить на координатной прямой. Также отметим, что в подобных записях не используются числовые промежутки с общими элементами, так как такие записи можно заменить объединением числовых промежутков без общих элементов. Например, объединение числовых множеств с общими элементами [−10, 0] и (−5, 3) есть полуинтервал [−10, 3) . Это же относится и к объединению числовых промежутков с одинаковыми граничными числами, например, объединение (3, 5]∪(5, 7] представляет собой множество (3, 7] , на этом мы отдельно остановимся, когда будем учиться находить пересечение и объединение числовых множеств .

Изображение числовых множеств на координатной прямой

На практике удобно пользоваться геометрическими образами числовых множеств – их изображениями на . Например, при решении неравенств , в которых необходимо учитывать ОДЗ, приходится изображать числовые множества, чтобы найти их пересечение и/или объединение. Так что полезно будет хорошо разобраться со всеми нюансами изображения числовых множеств на координатной прямой.

Известно, что между точками координатной прямой и действительными числами существует взаимно однозначное соответствие, что означает, что сама координатная прямая представляет собой геометрическую модель множества всех действительных чисел R . Таким образом, чтобы изобразить множество всех действительных чисел, надо начертить координатную прямую со штриховкой на всем ее протяжении:

А часто даже не указывают начало отсчета и единичный отрезок:

Теперь поговорим про изображение числовых множеств, представляющих собой некоторое конечное число отдельных чисел. Для примера, изобразим числовое множество {−2, −0,5, 1,2} . Геометрическим образом данного множества, состоящего из трех чисел −2 , −0,5 и 1,2 будут три точки координатной прямой с соответствующими координатами:

Отметим, что обычно для нужд практики нет необходимости выполнять чертеж точно. Часто достаточно схематического чертежа, что подразумевает необязательное выдерживание масштаба, при этом важно лишь сохранять взаимное расположение точек относительно друг друга: любая точка с меньшей координатой должна быть левее точки с большей координатой. Предыдущий чертеж схематически будет выглядеть так:

Отдельно из всевозможных числовых множеств выделяют числовые промежутки (интервалы, полуинтервалы, лучи и т.д.), что представляют их геометрические образы, мы подробно разобрались в разделе . Здесь не будем повторяться.

И остается остановиться лишь на изображении числовых множеств, представляющих собой объединение нескольких числовых промежутков и множеств, состоящих из отдельных чисел. Здесь нет ничего хитрого: по смыслу объединения в этих случаях на координатной прямой нужно изобразить все составляющие множества данного числового множества. В качестве примера покажем изображение числового множества (−∞, −15)∪{−10}∪[−3,1)∪ {log 2 5, 5}∪(17, +∞) :

И остановимся еще на достаточно распространенных случаях, когда изображаемое числовое множество представляет собой все множество действительных чисел, за исключением одной или нескольких точек. Такие множества частенько задаются условиями типа x≠5 или x≠−1 , x≠2 , x≠3,7 и т.п. В этих случаях геометрически они представляют собой всю координатную прямую, за исключением соответствующих точек. Иными словами, из координатной прямой нужно «выколоть» эти точки. Их изображают кружочками с пустым центром. Для наглядности изобразим числовое множество, соответствующее условиям (это множество по сути есть ):

Подведем итог. В идеале информация предыдущих пунктов должна сформировать такой же взгляд на запись и изображение числовых множеств, как и взгляд на отдельные числовые промежутки: запись числового множества сразу должна давать его образ на координатной прямой, а по изображению на координатной прямой мы должны быть готовы с легкостью описать соответствующее числовое множество через объединение отдельных промежутков и множеств, состоящих из отдельных чисел.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.