Функция нервной ткани в организме. Нервные ткани. Структура и функции нейронов

Нервная ткань образует нервную систему, которая делится на два отдела: центральный (включает в себя головной и спинной мозг) и периферический (состоит из нервов и периферических нервных узлов). Единую систему нервов также условно подразделяют на соматическую и вегетативную. Часть выполняемых нами действий находится под произвольным контролем. Соматическая нервная система является сознательно управляемой системой. Она передает импульсы, исходящие от органов чувств, мышц, суставов и чувствительных окончаний, в центральную нервную систему, передает сигналы головного мозга в органы чувств, мышцы, суставы и кожу. Вегетативная нервная система практически не контролируется сознанием. Она регулирует работу внутренних органов, кровеносных сосудов и желез.

Строение

Основные элементы нервной ткани - нейроны (нервные клетки). Нейрон состоит из тела и отходящих от него отростков. Большинство нервных клеток имеет несколько коротких и один или пару длинных отростков. Короткие, древовидно ветвящиеся отростки, называются дендритами. Их окончания получают нервный импульс от других нейронов. Длинный отросток нейрона, проводящий нервные импульсы от тела клетки к иннервируемым органам, называется аксоном. Самым крупным у человека является седалищный нерв. Его нервные волокна простираются от поясничного отдела позвоночника до стоп. Некоторые аксоны покрыты многослойным жиросодержащим образованием, называемым миелиновой оболочкой. Эти вещества образуют белое вещество головного и спинного мозга. Волокна, не покрытые миелиновой оболочкой, имеют серый цвет. Нерв сформирован из большого числа нервных волокон, заключенных в общую соединительнотканную оболочку. От спинного мозга отходят волокна, обслуживающие различные части тела. По всей длине спинного мозга расположена 31 пара этих волокон.

Сколько нейронов в организме человека?

Нервная ткань человека образована примерно 25 миллиардами нервных клеток и их отростков. Каждая клетка имеет крупное ядро. Каждый нейрон соединяется с другими нейронами, образуя таким образом гигантскую сеть. Передача импульса от одного нейрона другому происходит в синапсах - зонах контакта между оболочками двух нервных клеток. Передача возбуждения обеспечивается особыми химическими веществами - нейромедиаторами. Передающая клетка синтезирует нейромедиатор и выделяет его в синапс, а приемная клетка улавливает этот химический сигнал и превращает его в электрические импульсы. С возрастом могут образоваться новые синапсы, в то время, как образование новых нейронов невозможно.

Функции

Нервная система осуществляет восприятие, передачу и обработку информации. Нейроны передают информацию, создавая электрический потенциал, либо выделяя особые химические вещества. Нервы реагируют на механическое, химическое, электрическое и термическое раздражение. Для того, чтобы произошло раздражение соответствующего нерва, действие раздражителя должно быть достаточно сильным и продолжительным. В состоянии покоя существует разница в электрическом потенциале на внутренней и внешней сторонах клеточной мембраны. Под действием раздражителей происходит деполяризация - ионы натрия, находящиеся вне клетки, начинают продвигаться внутрь клетки. После окончания периода возбуждения клеточная мембрана вновь становится менее проницаемой для ионов натрия. Импульс распространяется по соматической нервной системе со скоростью 40-100 м в секунду. Между тем, по вегетативной НС возбуждение передается со скоростью примерно 1 метр в секунду.

Нервная система вырабатывает эндогенные морфины, которые оказывают болеутоляющее действие на организм человека. Они, аналогично искусственно синтезированному морфию, действуют в области синапсов. Эти вещества, выполняя функцию нейромедиаторов, блокируют передачу возбуждения нейронам.

Суточная потребность нейронов головного мозга в глюкозе составляет 80 г. Они усваивают около 18% кислорода, поступающего в организм. Даже кратковременное нарушение кислородного обмена ведет к необратимому поражению мозга.

Нервная ткань состоит из нервных клеток (нейронов) и клеток глии . Нервные клетки ответственны за восприятие сигнала, проведение импульса и его реализацию, а глиальные клетки выполняют трофические (питание), опорные функции для нейронов, а также защитные и изолирующие функции для нервных волокон. На всем протяжении своего существования клетки глии сохраняют способность к делению. Нейроны же утрачивают эту способность. Поэтому при заболеваниях, сопровождающихся потерей нервных клеток, глиальные клетки могут замещать нейроны.

Нейроны соединяются между собой посредством синапсов, образуя цепи, или узлы нейронов. Размер и форма нейронов варьируют в широких пределах, однако, основная структура их одинакова.

Строение нейрона

В соответствии с направлением проведения сигнала нервная клетка подразделяется на три сегмента: дендрит, аксон и перикарион (соматическая клетка).

Дендриты представляют собой древовидно ветвящиеся отростки, обладающие специфическими точками контакта (синапсами), которые воспринимают сигналы от других нейронов и передают их в перикарион. Оттуда по осевому цилиндру сигнал передается на воспринимающий орган (например, скелетную мышцу) или на другой нейрон.

Аксон – длинный отросток (до 100 см), окружен особой миелиновой оболочкой Роль миелиновой оболочки заключается в стимуляции передачи сигнала от клетки к клетке.

Перикарион (соматическая клетка ) обладает различной формой и размерами. Наряду с ядром перикарион содержит несколько органелл, а также многочисленные нейротрубочки и нейрофиламенты. Через эти нейротрубочки осуществляется транспорт нерастворимых белков.

По количеству дендритов и типу их ветвления нервные клетки разделяются на несколько типов. Униполярный нейрон обладает одним аксоном. В биполярном нейроне аксон и дендрит отходят от противоположных концов клетки. В ложноуниполярном нейрон образуется из биполярного нейрона путем слияния аксона и дендрита вблизи около тела клетки. В мультиполярном нейроне из клетки выходят многочисленные дендриты вместе с одним аксоном.

Клетки глии (нейроглии)

В соединительной ткани периферической и центральной нервной системы различают следующие типы клеток:
- шванновские клетки (образуют миелиновую оболочку);
- амфициты (образуют оболочку нервных клеток, спинальных ганглий и автономных ганглий);
- астроциты (отчасти выполняют опорную функцию);
- микроглия (обладают способностью к фагоцитозу);
- эпендимоциты (выстилают полости головного и спинного мозга);
- секреторные клетки сосудистого сплетения (вырабатывают жидкость, предохраняющую головной и спинной мозг от механических воздействий).

Нервы

Этот термин используется только для периферической нервной системы. Для головного и спинного мозга применяется название тракт (центральный путь). Нерв состоит из нескольких пучков нервных волокон. В одном нерве могут находиться как чувствительные (афферентные), так и двигательные (эфферентные) волокна. Поэтому такой нерв содержит сотни индивидуальных аксонов, заключенных в миелиновые оболочки, а также дополнительный слой соединительной ткани. В свою очередь, пучки волокон окружены еще одним слоем соединительной ткани. Все оболочки обеспечивают не только механическую защиту нерва, но и служат для питания волокон за счет кровеносных сосудов, находящихся в нерве.

В отличие от аксонов в ЦНС, периферические нервы способны к регенерации после повреждений, даже если нерв перерезан. Это происходит при сшивании концов нерва. После перерезки нерва, в первую очередь, дегенерирует часть аксона, отделенная от тела клетки, а шванновские клетки служат резервом для регенерации аксона. Регенерирующий аксон растет со скоростью 1-2 мм в день в направлении иннервируемого органа (например, мышцы). Для полной реиннервации необходимо несколько месяцев. После ампутации конечности аксоны начинают расти во всех направлениях и образуют пролиферирующую массу, так называемую ампутационную нейрому.

Нервный импульс (потенциал действия)

Способность отвечать возбуждением на внешние сигналы характерна для всех клеток. Быстрая передача сигналов посредством специализированных структур (аксонов) присуща только нервным клеткам. Для нервной системы животных и человека сигнал, или потенциал действия, представляет собой универсальное средство сообщения.

Существенным параметром такой связи является не интенсивность одиночного потенциала действия, а количество полученных, обработанных и переданных нервным волокном сигналов в единицу времени (частота). Таким образом, язык, или код нейрона, выражается частотой сигнала (до 500 импульсов в секунду).

Генерация потенциала действия в нервной клетке зависит от отрицательного потенциала покоя, который характерен почти для всех клеток и выражается разностью электрических потенциалов между наружной клеточной мембраной и содержимым клетки. При возбуждении нервной клетки раздражителями электрической или химической природы происходит кратковременная потеря положительного потенциала на ее мембране, и она заряжается слабо отрицательно. Мембранный потенциал меняется от -60 мВ (потенциал покоя) до +20 мВ. Менее чем за 1 мс исходный потенциал восстанавливается. Поскольку клетка теряет первоначальную поляризацию, этот процесс называется деполяризацией. Возвращение клетки к исходному состоянию носит название реполяризации.

Передача импульса с аксона на другой нейрон происходит через синапс , при участии особых веществ – нейромедиаторов. Они высвобождаются из специальных синаптических пузырьков. Нейромедиаторы диффундируют через синаптическую щель и вызывают деполяризацию постсинаптической мембраны, способствующую дальнейшей передаче импульса.

Подробности

Нервная ткань – система взаимосвязанных нервных клеток и нейроглии , обеспечивающих специфические функции восприятия раздражений, возбуждения, выработки нервного импульса и передачи его . Она является основой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей средой.
Нервные клетки – основные структурные компоненты нервной ткани, выполняющие специфическую функцию.

Нейроглия – обеспечивает существование и функционирование нервных клеток, осуществляя опорную трофическую, разграничительную, секреторную и защитную функции .

Развитие нервной ткани.

Развитие из дорсальной мезодермы . Эктодерма по срединной линии формирует нервную пластинку, латеральные края которой образуют нервные валики, между валиками формируется нервный желобок. Передний конец нервной пластинки образует головной мозг, латеральные края далее образуют нервную трубку.

Нервный гребень – часть нервной пластинки между нервной трубкой и эпидермальной эктодермой. Дает начало нейронам чувствительных и автономных ганглиев, клеткам мягкой и паутинной оболочек мозга и некоторым видам глии: нейролеммоцитам (шванновским клеткам), клеткам-сателлитам, меланоцитам кожи, сенсорным клеткам.

Из нервной трубки в дальнейшем формируются нейроны и макроглия ЦНС . Вентрикулярная зона состоит из делящихся клеток нейронов и макроглии. Субвентрикулярная – высокая пролиферация, клетки не способны перемещать ядра. Промежуточная зона – нейробласты (в дальнейшем перестают делиться и дифференцируются в нейроны) и глиобласты (продолжают делиться и дают начало астроцитам и олигодендроцитам, из клеток этого слоя образуется серое вещество спинного и часть серого вещества головного мозга. Маргинальная зона – дает начало белому веществу: кора и мозжечок.

Признак специализации нервных клеток – появление в цитоплазме нейрофиламентов и микротрубочек . Из заостренного конца тела растет аксон, позднее дифференцируются дендриты. Нейробласты превращаются в нейроны, между которыми устанавливаются синаптические контакты. Нейроны ЦНС млекопитающих способны формировать новые ветви и новые синапсы.

Нейроны. Строение. Классификация. Функции.

Специализированные клетки, обрабатывают стимулы, поводят и воспринимают импульс и влияют на другие нейроны, мышечные или секреторные клетки . Выделяют нейромедиаторы и другие вещества, передающие информацию. С помощью отростков осуществляет синаптический контакт с другими нейронами, образуют рефлекторную дугу: рецепторные (чувствительные, афферентные), ассоциативные и эфферентные (эффекторные) нейроны.

Униполярные нейроны – только один аксон, биполярные (органы чувств) – 1 аксон + 1 дендрит, мультиполярные – 1 аксон и много дендритов, псевдоуниполярные – 1 вырост, делящийся на дендрит и аксон. Дендритное поле – область ветвления дендритов одного нейрона.

Дендриты – выпячивания тела клетки.

Аксон – отросток, по которому передается импульс от тела клетки.

Плазмолемма обладает способностью генерировать и проводить импульс. В ней находятся ионные каналы, которые могут быть открыты, закрыты или инактивированы. Переход каналов из закрытого в открытое состояние регулируется мембранным потенциалом. Тигроид (тельца Нессаля) – базофильные глыбки в перикарионах и дендритах нейронов, никогда не обнаруживаются в аксонах. Аппарат Гольджи сильно развит – пузырьки АГ транспортируют белки из грЭПР к плазмолемме (интегральные белки) или в лизосомы (лизосомальные гидролазы). Также развиты митохондрии и лизосомы.

Возрастные изменения нейронов сопровождаются накоплением липофусцина – телолизосомы с продуктами непереваренных структур, разрушение крист митохондрий.

Цитоскелет: нейрофиламенты (12нм), пучки которых образуют нейрофибриллы – образующие сети в теле нейрона, в отростках расположены параллельно. Нейротубулы (27нм). Поддержание формы клетки, рост и транспорт.

Аксональный транспорт – перемещение – от тела в отростки (антероградный) и обратно (ретроградный). Направляется нейротубулами, участвуют белки кинезин и динеин.

Секреторные нейроны – синтезируют и секретируют нейромедиаторы (ацетолхолин, норадреналин, серотонин).

Нейроглия. Функции, классификация, особенности.

Функции: опорная, трофическая. Разграничительная , поддержание гомеостаза вокруг нейронов, защитная, секреторная .

Глия ЦНС: макроглия и микроглия.

Макроглия.
1.Эпендимоциты – выстилают желудочки головного мозга и центральный канал спинного мозга. Между соседними клетками щелевидные соединения и пояски сцепления, плотные соединения отсутствуют (церебральная жидкость может проникать через них в нервную ткань). Большинство эпендимоцитов имеют реснички. Тиницты – 1 отросток, погруженный в нервную ткань, с помощью него передают информацию о составе жидкости на капиллярную сеть воротной вены.
2.Астроциы – опорная и разграничительная функции. Протоплазматические – в сером веществе ЦНС, отростки тянутся к БМ капилляров, к телам и дендритам нейронам, окружают синапсы и отделяют их друг от друга. Волокнистые астроциты – в белом веществе. Астроциты накапливают и передают вещества от капилляров к нейронам.
3.Олигодендроциты – в сером и белом веществе. Могут участвовать в миеланизации аксонов.

Микроглия.
Представляют собой фагоцитирующие клетки. Функции: защита от инфекции и повреждения и удаления продуктов разрушения нервной ткани.
1. Ветвистая микроглия встречается в сером и белом веществе ЦНС, имеет ветвящиеся отростки.
2. В развивающемся мозге млекопитающих – амебоидная : имеет псевдоподии и филоподии, обладает высокой фагоцитирующей активностью лизосомальных ферментов, это необходимо, когда гематоэнцефалический барьер еще не сформирован и вещества из крови попадают в ЦНС. Удаляет апоптируемые клетки.
3. Реактивная микроглия появляется после травмы в любой области мозга, не имеет отростков.
4. Глия периферической нервной системы – происходит из нервного гребня. К ней относятся: нейролеммоциты - формируют оболочки отростков нервных клеток в нервных волокнах ПНС (шванновские клетки) и глиоциты ганглиев – окружают тела нейронов в нервных узлах и участвуют в обмене веществ нейронов.

Нервные волокна. Классификация, строение, особености.

Различают миелиновые и безмиелиновые волокна . Отросток – осевой цилиндр (аксон). В ЦНС оболочки отростков образуют олигодендроциты, в ПНС – нейролеммоциты.

Безмиелиновые нервные волокна. В составе вегетативной нервной системы. Волокна, содержащие несколько осевых цилиндров (10-20 в НВ внутренних органов) – волокна кабельного типа . Оболочка нейролеммоцита прогибается, его края над осевым цилиндром сближаются и образуют сдвоенную мембрану – мезоаксон. Передача импульса со скоростью 1-2 м/с.

Миелиновые нервные волокна. В ЦНС и ПНС, диаметр 2-20 мкм. Состоят из осевого цилиндра, одетого оболочкой из шванновских клеток . Различают 2 слоя: миелиновый внутренний и наружный, состоящий из цитоплазмы, ядер нейроллеммоцитов и нейролеммы.
Миелиновый слой содержит много липидов, встречаются насечки миелина (Шмидта-Лантермана) , через определенные интервалы встречаются безмиелиновые участки – перехваты Ранвье .

Периферическая нервная система : в процессе развития аксон погружается в оболочку нейролеммоцита, края смыкаются – образуется мезоаксон, который формирует миелиновый слой, ветвление аксонов происходит в области перехватов. Межузловой сегмент – участок между перехватами.

Миелиновые волокна ЦНС – миелиновый слой формируется одним из отростков олигодендроглиоцита. Не имеют насечек миелина, нервные волокна не окружены БМ. Миелин содержит миелиновый щелочной белок и протеолипидный белок. Передача импульса 5-120 м/с.

При травме распадается миелиновый слой и осевой цилиндр, продукты распада нейтрализуются макрофагами за 1 неделю. В ЦНС не регенерируют, в ПНС – хорошая регенерация . ближайшие нейролеммоциты пролиферируют, осевые цилиндры пускают множество отростков в нейролеммоциты, не достигшие цели – погибают, иногда эти отростки сплетаются и образуют ампутационную неврому.

Нервные окончания.

Нервные волокна заканчиваются нервными окончаниями. Их 3 группы : концевые аппараты , образуют межнейронные синапсы и осуществляющие связь между нейронами, эффекторные – передают нервный импульс на ткани рабочего органа и рецепторные (чувствительные) .

Синапсы – предназначены для передачи импульса с одного нейрона на другой или на мышечные и железистые структуры, обеспечивают поляризацию импульса, те определяют его направление. Только импульс, достигающий терминалей аксона с помощью синапсов может передать возбуждение на другой нейрон, мышечную или железистую клетку.

Межнейрональные синапсы.
Химические синапсы передают импульс на другую клетку с помощью нейромедиаторов, находящихся в синаптических пузырьках (пресинаптические пузырьки). Ацетилхолин (холинергические синапсы), норадреналин, дофамин, глицин – медиаторы тормозящих синапсов, эндорфины и энкефалины – медиаторы восприятия боли.
Пресинаптическая мембрана – мембрана клетки, передающей импульс, в этой области локализованы кальциевые каналы, способствующие слипанию пузырьков с пре-мембраной и выделению медиатора в синаптическую щель (20-30нм). Постсинампическая мембрана – в клетке, воспринимающей импульс.

Процессы в синапсе при передаче сигнала:
1. Волна деполяризации отходит от пре-мембраны
2. Открытие кальциевых каналов, выход Са в терминаль
3. Вхождене Са в терминаль вызывает экзоцитоз нейромедиатора, мембрана синаптических пузырьков входит в пре-мембрану, медиатор попадает в синаптическую щель. Дальше мембраны синаптических пузырьков, пре-мембрана и часть медиатора подвергаются эндоцитозу и происходит рециркуляция синаптических пузырьков, часть мембран и медиатора поступает в прокарион и разрушается лизосомами.
4. Нейромедиатор диффундирует и связывается с пост-мембраной
5. Молекулярные изменении в пост-мембране, открытие ионных каналов - реакция возбуждения или торможения.

Электрические синапсы связаны щелевидными контактами.

Эффекторные нервные окончания.

Двигательные – импульс передается на ткани рабочих органов . Нервно-мышечные окончания – в поперечно-полосатых мышцах, состоят из концевого ветвления осевого цилиндра НВ и спецецилизированного участка мышечного волокна. Миелиновое нервное волокно подходит к мышечному – теряет миелиновый слой, погружается в мышечное волокно. Плазмолеммы НВ и МВ разделены синаптической щелью. Саркоплазма с митохондриями и ядрами – постсинаптическая часть синапса терминальные ветви содержат много митохондрий и пре-пузырьков с ацетилхолином.
В гладкой мышечной ткани – представляют утолщения, нейролеммоциты часто отсутствуют. Сходное строение имеют нейрожелезистые окончания .

Рецепторные. Экстерорецепторы: слуховые, зрительные, обонятельные, вкусовые, осязательные.
Интерорецепторы : висцеро- (состояние внутренних органов), вестибуло-проприорецепторы (опорно-двигательный аппарат). Различают:
1. Свободные нервные окончания , состоящие только из конечных ветвлений осевого цилиндра. Воспринимают холод, тепло и боль, характерны для эпителия, подходят к нему - теряют миелиновый слой - сливаются.
2. Несвободные – содержат ветвления цилиндра и клетки глии, могут быть инкапсулированы.

1) Пластинчатые тельца Фаттера-Пачинни (воспринимают давление , в глубоких слоях дермы, брыжейке и внутренних органах): в центре луковица, состоящая из видоизмененных леммоцитов, снаружи тельце покрыто капсулой (из фибробластов). Давление на капсулу передается через заполненные жидкостью пространства между пластинками на внутреннюю луковицу и воспринимается безмиелиновыми волокнами на внутренней луковице.
2) Осязательные тельца Мейснера - в верхушках сосочков кожи, состоят из измененных нейролеммоцитов – тактильных клеток , тельце окруженных капсулой. Коллагеновые фибриллы и волокна связывают тельце с капсулой, а капсула с базальным слоем эпидермиса, так что любое смещение эпидермиса передается на тельце.
3) Нервно-мышечные веретена рецептор на растяжение , состоят из нескольких исчерченных НВ, заключенных в соединительнотканную капсулу – интрафузальных волокон: рецепторная часть – центральная, несокращающаяся. Различают веретена с ядерной сумкой или ядерной цепочкой . К интрафузальным волокнам подходят афферентные: первичные – образуют кольце-спиральные окончания как с ядерной сумкой, так и с ядерной цепочкой. Вторичные – только с ядерной цепочкой. При растяжении или натяжении увеличивается их длина, регистрируемая рецепторами – кольце-спиральные окончания реагируют на изменение длины и ширины, гроздевидные – только длины - поступление динамического сигнала о растяжении в спинной мозг. Остальные волокна за пределами капсулы – экстрафузальные.
В месте соединения мышцы с сухожилием – нервно-сухожильные веретена .

Рефлекторная дуга - цепь нейронов, связанных синапсами и обеспечивающая проведение нервного импульса от рецептора чувствительного нейрона до эффекторного окончания в рабочем органе. Простая – из чувствительного и двигательного нейронов, сложная – между чувствительным и двигательным нейронами есть еще вставочные нейроны.

Мы часто нервничаем, постоянно фильтруем поступающую информацию, реагируем на окружающий мир и пытаемся прислушаться к собственному телу, и во всем этом нам помогают удивительные клетки. Они являются результатом длительной эволюции, итогом работы природы на протяжении всего развития организмов на Земле.

Мы не можем сказать, что наша система восприятия, анализа и ответа идеальна. Но мы очень далеко ушли от животных. Понять, как работает такая сложная система, очень важно не только специалистам - биологам и медикам. Этим может заинтересоваться и человек другой профессии.

Информация в этой статье доступна каждому и может принести пользу не только как знание, ведь понимание своего организма - ключ к пониманию самого себя.

За что она отвечает

Нервная ткань человека отличается уникальным структурным и функциональным разнообразием нейронов и спецификой их взаимодействий. Ведь наш мозг - очень сложно устроенная система. А чтобы управлять нашим поведением, эмоциями и мышлением, нужна очень сложная сеть.

Нервная ткань, строение и функции которой определены совокупностью нейронов - клеток с отростками - и обуславливают нормальную жизнедеятельность организма, во-первых, обеспечивает согласованную деятельность всех систем органов. Во-вторых, она связывает организм с внешней средой и обеспечивает приспособительные реакции на ее изменение. В-третьих, контролирует обмен веществ при изменяющихся условиях. Все виды нервных тканей являются материальной составляющей психики: сигнальные системы - речь и мышление, особенностей поведения в социуме. Некоторые ученые высказывали гипотезу, что человек сильно развил свой разум, за что ему пришлось "пожертвовать" многими животными способностями. Например, мы не обладаем острым зрением и слухом, какими могут похвастаться животные.

Нервная ткань, строение и функции которой имеют в основе электрическую и химическую передачу, имеет четко локализованные эффекты. В отличие от гуморальной, эта система действует моментально.

Множество маленьких передатчиков

Клетки нервной ткани - нейроны - являются структурно-функциональными единицами нервной системы. Клетку нейрона характеризует непростое строение и повышенная функциональная специализация. Структура нейрона состоит из эукариотического тела (сомы), диаметр которой 3-100 мкм и отростков. Сома нейрона содержит ядро и ядрышко с аппаратом биосинтеза, который образует ферменты и вещества, присущие специализированным функциям нейронов. Это тельца Ниссля - плотно примыкающие друг к другу сплющенные цистерны шероховатой эндоплазматической сети, а также развитый аппарат Гольджи.

Функции нервной клетки могут непрерывно осуществляться, благодаря обилию в тельце «энергостанций», вырабатывающих АТФ, - хондрасом. Цитоскелет, представленный нейрофиламентами и микротрубочками, играет опорную роль. В процессе утраты мембранных структур синтезируется пигмент липофусцин, количество которого нарастает с увеличением возраста нейрона. В стволовых нейронах образуется пигмент мелатонин. Ядрышко состоит из белка и РНК, ядро из ДНК. Онтогенез ядрышка и базофилов определяют первичные поведенческие реакции людей, так как они зависят от активности и частоты контактов. Нервная ткань подразумевает основную структурную единицу - нейрон, хотя существуют еще другие виды вспомогательных тканей.

Особенности строения нервных клеток

Двухмембранное ядро нейронов имеет поры, через которые проникают и выводятся отработанные вещества. Благодаря генетическому аппарату происходит дифференцировка, обуславливающая конфигурацию и частоту взаимодействий. Еще одна функция ядра заключается в регуляции синтеза белка. Созревшие нервные клетки не могут делиться митозом, и генетически обусловленные активные продукты синтеза каждого нейрона должны обеспечить функционирование и гомеостаз в течение всего жизненного цикла. Замена поврежденных и утраченных частей может происходить лишь внутриклеточно. Но наблюдаются и исключения. В эпителии некоторые ганглии животных способны к делению.

Клетки нервной ткани визуально отличаются разнообразием размеров и форм. Нейронам присущи неправильные очертания из-за отростков, зачастую многочисленных и разросшихся. Это - живые проводники электрических сигналов, посредством которых составлены рефлекторные дуги. Нервная ткань, строение и функции которой зависят от высокодифференцированных клеток, роль которых заключается в восприятии сенсорной информации, кодировании ее посредством электрических импульсов и передаче остальным дифференцированным клеткам, способна обеспечить ответную реакцию. Она практически мгновенна. Но некоторые вещества, в том числе и алкоголь, сильно замедляют ее.

Про аксоны

Все виды нервной ткани функционируют с непосредственным участием отростков-дендритов и аксонов. Аксон переводится с греческого как «ось». Это удлиненный отросток, проводящий возбуждение от тела к отросткам других нейронов. Кончики аксона сильно разветвлены, каждый способен взаимодействовать с 5000 нейронов и образовывать до 10 тысяч контактов.

Локус сомы, от которого ответвляется аксон, называется аксонным холмиком. Его с аксоном объединяет то, что в них отсутствуют шероховатая эндоплазматическая сеть, РНК и ферментативный комплекс.

Немного о дендритах

Это название клеток обозначает «дерево». Словно ветви, от сомы отрастают коротенькие и сильно ветвящиеся отростки. Они принимают сигналы и служат локусами, где возникают синапсы. Дендриты с помощью боковых отростков - шипиков - увеличивают площадь поверхности и, соответственно, контакты. Дендриты без покровов, аксоны же окружены имеет липидную природу, и его действие сходно с изоляционными свойствами пластикового или резинового покрытия электрических проводов. Точка генерации возбуждения - холмик аксона - возникает в месте отхождения аксона от сомы в триггерной зоне.

Белое вещество восходящих и нисходящих путей в спинном и головном мозге образуют аксоны, посредством которых проводятся нервные импульсы, осуществляя проводниковую функцию - передачу нервного импульса. Электрические сигналы передаются различным отделам головного и спинного мозга, осуществляя связь между ними. Исполнительные органы при этом могут соединяться с рецепторами. Серым веществом образована кора головного мозга. В позвоночном канале располагаются центры врожденных рефлексов (чихания, кашля) и вегетативные центры рефлекторной деятельности желудка, мочеиспускания, дефекации. Вставочные нейроны, тела и дендриты двигательных выполняют рефлекторную функцию, осуществляя двигательные реакции.

Особенности нервой ткани обусловлены числом отростков. Нейроны бывают униполярными, псевдоуниполярными, биполярными. Нервная ткань человека не содержит униполярных с одним В мультиполярных - обилие дендритных стволов. Такая разветвленность нисколько не сказывается на скорости проведения сигнала.

Разные клетки - различные задачи

Функции нервной клетки осуществляют разные группы нейронов. По специализации в рефлекторной дуге различают афферентные или чувствительные нейроны, проводящие импульсы от органов и кожных покровов в головной мозг.

Вставочные нейроны, или ассоциативные, - это группа переключающих или связывающих нейронов, которые анализируют и принимают решение, осуществляя функции нервной клетки.

Эфферентные нейроны, или чувствительные, проводят информацию об ощущениях - импульсы от кожных покровов и внутренних органов в мозг.

Эфферентные нейроны, эффекторные, или двигательные, проводят импульсы - «команды» от головного и спинного мозга ко всем рабочим органам.

Особенности нервных тканей в том, что нейроны выполняют сложную и ювелирную работу в организме, поэтому будничная примитивная работа - обеспечение питанием, удаление продуктов распада, защитная функция достается вспомогательным клеткам нейроглии или опорными шванновским.

Процесс образования нервных клеток

В клетках нервной трубки и ганглиозной пластинки происходит дифференциация, определяющая особенности нервных тканей в двух направлениях: крупные становятся нейробластами и нейроцитами. Мелкие клетки (спонгиобласты) не увеличиваются и становятся глиоцитами. Нервная ткань, виды тканей которой составлены нейронами, состоит из основных и вспомогательных. Вспомогательные клетки ("глиоциты") имеют особую структуру и функции.

Центральная представлена следующими типами глиоцитов: эпендимоцитами, астроцитами, олигодендроцитами; периферическая — глиоцитами ганглиев, концевыми глиоцитами и нейролеммоцитами - шванновскими клетками. Эпендимоциты выстилают полости желудочков мозга и спинномозговой канал и секретируют цереброспинальную жидкость. Виды нервных тканей - астроциты звездчатой формы образуют ткани серого и белого вещества. Свойства нервной ткани - астроцитов и их глиозная мембрана способствует созданию гематоэнцефалической преграды: между жидкой соединительной и нервной тканями проходит структурно-функциональная граница.

Эволюция ткани

Основным свойством живого организма является раздражительность или чувствительность. Тип нервной ткани обоснован филогенетическим положением животного и отличается широкой вариативностью, усложняясь в процессе эволюции. Всем организмам требуются определенные параметры внутренней координации и регуляции, надлежащее взаимодействие между стимулом для гомеостаза и физиологического состояния. Нервная ткань животных, особенно многоклеточных, строение и функции которой претерпели ароморфозы, способствует выживанию в борьбе за существование. У примитивных гидроидных представлена звездчатыми, нервными клетками, разбросанными по всему организму и связанными тончайшими отростками, переплетающимися между собой. Такой тип нервной ткани называется диффузной.

Нервная система плоских и круглых червей стволовая, лестничного типа (ортогон) состоит из парных мозговых ганглиев - скоплений нервных клеток и отходящих от них продольных стволов (коннективы), соединенных между собой поперечными тяжами-комиссурами. У кольчецов от окологлоточного ганглия, соединенного тяжами, отходит брюшная нервная цепочка, в каждом сегменте которой - два сближенных нервных узла, соединенных нервными волокнами. У некоторых мягкотелых концентрируются нервные ганглии с образованием головного мозга. Инстинкты и ориентация в пространстве у членистоногих определяются цефализацией ганглиев парного головного мозга, окологлоточным нервным кольцом и брюшной нервной цепочкой.

У хордовых нервная ткань, виды тканей которой сильно выражены, сложно устроена, но такое строение эволюционно обосновано. Разные слои возникают и располагаются на спинной стороне тела в виде нервной трубки, полость - невроцель. У позвоночных дифференцируется в головной и спинной мозг. При формировании головного мозга на переднем конце трубки образуются вздутия. Если у низших многоклеточных нервная система играет чисто связующую роль, то у высокоорганизованных животных осуществляется хранение информации, ее извлечение при необходимости, а также обеспечивает переработку и интеграцию.

У млекопитающих эти мозговые вздутия дают начало основным отделам головного мозга. А вся остальная трубка образует спинной мозг. Нервная ткань, строение и функции которой у высших млекопитающих свои, претерпела значительные изменения. Это прогрессивное развитие коры головного мозга и всех отделов обуславливающих сложную адаптацию к условиям внешней среды, и регуляция гомеостаза.

Центр и периферия

Отделы нервной системы классифицируют по функциональному и анатомическому строению. Анатомическое строение схоже с топонимикой, где выделяют центральную нервную систему и периферическую. входит головной и спинной мозг, а периферическая представлена нервами, узлами и окончаниями. Нервы представлены скоплениями отростков вне центральной нервной системы, покрыты общей миелиновой оболочкой, проводят электрические сигналы. Дендриты чувствительных нейронов образуют чувствительные нервы, аксоны - двигательные нервы.

Совокупность длинных и коротких отростков образует смешанные нервы. Скапливаясь и концентрируясь, тела нейронов составляют узлы, выходящие за пределы центральной нервной системы. Нервные окончания делят на рецепторные и эффекторные. Дендриты посредством концевых разветвлений преобразуют раздражения в электрические сигналы. А эфферентные окончания аксонов - в рабочих органах, волокнах мышц, железах. Классификация по функциональности подразумевает деление нервной системы на соматическую и автономную.

Что-то мы контролируем, а что-то нам неподвластно

Свойства нервной ткани объясняют тот факт, что подчиняется воле человека, иннервируя работу опорной системы. Двигательные центры находятся в коре головного мозга. Автономная, которую называют еще и вегетативной, не зависит от воли человека. Исходя из собственных запросов, невозможно ускорить или замедлить сердцебиение или моторику кишечника. Так как местоположение вегетативных центров - гипоталамус, с помощью автономной нервной системы осуществляется контроль за работой сердца и сосудов, эндокринного аппарата, полостных органов.

Нервная ткань, фото которой вы можете видеть выше, образует симпатический и парасимпатический отделы которые позволяют выступать им в роли антагонистов, оказывая взаимопротивоположный эффект. Возбуждение в одном органе вызывает процессы торможения в другом. К примеру, симпатические нейроны вызывают сильное и частое сокращение камер сердца, сужение сосудов, скачки артериального давления, так как выделяется норадреналин. Парасимпатика, высвобождая ацетилхолин, способствует ослаблению ритмов сердца, увеличению просвета артерий, понижению давления. Уравновешивание этих групп медиаторов нормализует сердечный ритм.

Симпатическая нервная система действует во время интенсивного напряжения при испуге или стрессе. Сигналы возникают в районе грудных и поясничных позвонков. Парасимпатическая система включается при отдыхе и переваривании пищи, в процессе сна. Тела нейронов - в стволе и крестце.

Более подробно изучив особенности клеток Пуркинье, которые имеют грушевидную форму со множеством ветвящихся дендритов, можно увидеть, как осуществляется передача импульса, и раскрыть механизм последовательных этапов процесса.

Нервная ткань располагается в проводящих путях, нервах, головном и спинном мозге, ганглиях. Регулирует и координирует всœе процессы в организме, а так же осуществляет связь с внешней средой.

Основным свойством является возбудимость и проводимость.

Нервная ткань состоит из клеток - нейронов, межклеточного вещества - нейроглия, которая представлена глиальными клетками.

Каждая нервная клетка состоит из тела с ядром, особых включений и нескольких коротких отростков – дендритов, и одного или нескольких длинных – аксонов. Нервные клетки способны воспринимать раздражения из внешней или внутренней среды, преобразовывать энергию раздражения в нервный импульс, проводить их, анализировать и интегрировать. По дендритам нервный импульс идет к телу нервной клетки; по аксону – от тела к следующей нервной клетке или к рабочему органу.

Нейроглия окружает нервные клетки, выполняя при этом опорную, трофическую и защитную функции.

Нервные ткани образуют нервную систему, входят в состав нервных узлов, спинного и головного мозга.

Функции нервной ткани

  1. Генерация электрического сигнала (нервного импульса)
  2. Проведение нервного импульса.
  3. Запоминание и хранение информации.
  4. Формирование эмоций и поведения.
  5. Мышление.

КЛЕТКИ МЫШЕЧНОЙ И НЕРВНОЙ СИСТЕМЫ.

План лекции:

1. СТРОЕНИЕ МЫШЕЧННЫХ КЛЕТОК.

РАЗНОВИДНОСТЬ МЫШЕЧНЫХ КЛЕТОК.

ИЗМЕНЕНИЯ В МЫШЕЧНЫХ КЛЕТКАХ ПОД ВЛИЯНИЕМ НЕРВОВ.

СТРОЕНИЕ НЕРВНОЙ КЛЕТКИ.

МОТОНЕЙРОНЫ

РАЗДРАЖИМОСТЬ, ВОЗБУДИМОСТЬ, ДВИЖЕНИЕ – КАК СВОЙСТВО ЖИВОГО

Мышечные клетки представляют собой вытянутые волокна, поперечник которых 0,1 – 0,2 мм, длина может достигать 10 см и более.

В зависимости от особенностей строения и функции мышцы разделяются на два вида – гладкие и поперечно-полосатые. Поперечно-полосатые – мышцы скелета, диафрагмы, языка, гладкие – мышцы внутренних органов.

Поперечно-полосатое мышечное волокно млекопитающих является многоядерной клеткой, так как оно имеет не одно, как большинство клеток, а много ядер.

Чаще ядра располагаются по периферии клетки. Снаружи мышечная клетка покрыта сарколеммой – мембраной, состоящей из белков и липоидов.

Она регулирует переход различных веществ в клетку и из неё в межклеточное пространство. Мембрана обладает избирательной проницаемостью – через неё проходят такие вещества, как глюкоза, молочная кислота, аминокислоты, и не проходят белки.

Но при напряженной мышечной работе (когда наблюдается сдвиг реакции в кислую сторону), проницаемость мембраны изменяется, и через неё могут выходить из мышечной клетки белки и ферменты.

Внутренняя среда мышечной клетки — сарколемма . В ней располагается большое количество митохондрий, которые являются местом образования энергии в клетке и накапливают её в виде АТФ.

Под влиянием тренировок в мышечной клетке увеличиваются число и размеры митохондрий, возрастает производительность и пропускная способность их окислительной системы.

Это обеспечивает усиление энергетических ресурсов мышц. В клетках мышц, тренированных «на выносливость», митохондрий больше, чем в мышцах, выполняющих скоростную работу.

Сократительным элементом мышечного волокна являются миофибриллы . Это тонкие длинные нити, обладающие поперечной исчерченностью. Под микроскопом они кажутся заштрихованными темными и светлыми полосками. Поэтому их называют поперечно-полосатыми. Миофибриллы гладкой мышечной клетки не имеют поперечной исчерченности и при рассмотрении в микроскоп кажутся однородными.

Гладкие мышечные клетки сравнительно короткие.

Своеобразным строением и функцией обладает сердечная мышца. Существует два вида клеток сердечной мышцы:

1) клетки, обеспечивающие сокращение сердца,

2) клетки, обеспечивающие проведение нервных импульсов внутри сердца.

Сократительная клетка сердца называется – миоцит , она прямоугольная по форме, имеет одно ядро.

Миофибриллы мышечных клеток сердца так же, как у клеток скелетных мышц, поперечно исчерчены. В клетке сердечной мышцы больше митохондрий, чем в клетках поперечно-полосатых мышц. Мышечные клетки сердца соединены между собой при помощи особых выростов и вставочных дисков. Поэтому сокращение сердечной мышцы происходит одновременно.

Отдельные мышцы могут существенно отличаться в зависимости от характера деятельности. Так, мышцы человека состоят из 3-х типов волокон – темных (тонических), светлых (фазических) и переходных.

Соотношение волокон в различных мышцах неодинаково. Например: у человека к фазическим относятся двуглавая мышца плеча, икроножная мышца голени, большинство мышц предплечья; к тоническим – прямая мышца живота, большинство мышц позвоночного столба. Это разделение не постоянно.

В зависимости от характера мышечной деятельности в фазических волокнах могут быть усилены свойства тонических, и наоборот.

Основой жизни являются белки. 85 % сухого остатка скелетной мышцы приходится на белки. Одни белки выполняют строительную функцию, другие участвуют в обмене веществ, третьи обладают сократительными свойствами.

Так, в состав миофибрилл входят сократительные белки актин и миозин . При мышечной деятельности миозин объединяется с актином, образуя новый белковый комплекс актомиозин, который обладает сократительными свойствами, и, следовательно, способностью производить работу.

К белкам мышечных клеток относится и миоглобин , который является переносчиком О2 из крови внутрь клетки, где обеспечивает окислительные процессы. Особенно возрастает значение миоглобина при мышечной работе, когда потребность в О2 может увеличиться в 30 и даже 50 раз.

Большие изменения в мышечных клетках происходят под влиянием тренировки: увеличивается содержание белков и число миофибрилл, возрастает число и размеры митохондрий, усиливается кровоснабжение мышц.

Всё это обеспечивает дополнительное снабжение мышечных клеток кислородом, необходимым для обмена веществ и энергии в работающей мышце.

Сокращение мышц происходит под влиянием тех импульсов, которые возникают в нервных клетках – нейронах .

Каждый нейрон имеет тело, ядро и отростки – нервные волокна. Отростки бывают 2-х видов – короткие – дендриты (их бывает несколько) и длинные – аксоны (один). Дендриты проводят нервные импульсы к телу клетки, аксоны – от тела к периферии.

В нервном волокне различают внешнюю часть – оболочку, которая в разных местах имеет перетяжку – перехват, и внутреннюю часть – собственно нейрофибриллы.

Оболочка нервных клеток состоит из жироподобного вещества – миелина . Волокна двигательных нервных клеток имеют миелиновую оболочку и называются миелиновыми; волокна, идущие к внутренним органам, такой оболочки не имеют и называются безмякотными.

Специальными органоидами нервной клетки, проводящими нервный импульс, являются нейрофибриллы. Это такие нити, которые в теле клетки расположены в виде сетки, а в нервном волокне – параллельно длине волокна.

Нервные клетки связаны между собой посредством особых образований – синапсов .

Нервный импульс может переходить с аксона одной клетки на дендрит или тело другой только в одном направлении. Нервные клетки могут функционировать только при хорошем снабжении кислородом. Без кислорода нервная клетка живёт 6 минут.

Мышцы иннервируются нервными клетками, которые называются мотонейронами.

Они находятся в передних рогах спинного мозга. От каждого мотонейрона отходит аксон и, покидая спинной мозг, входит в состав двигательного нерва. При подходе к мышце аксоны разветвляются и контактируют с мышечными волокнами. Один мотонейрон может быть связан с целой группой мышечных волокон. Мотонейрон, его аксон и иннервируемая им группа мышечных волокон называется – нейромоторная единица . От числа и особенностей включения нейромоторных единиц зависит величина мышечных усилий и характер движения.

Отличительным свойством живого является – раздражимость, возбудимость, способность к движению.

Раздражимость – способность реагировать на различные раздражения.

Раздражители могут быть внутренними и внешними. Внутренние – внутри организма, внешние – вне его. По природе – физические (температура), химические (кислотность, щелочность), биологические (вирусы, микробы). По биологической значимости – адекватные, неадекватные. Адекватные – в естественных условиях, неадекватные – по своей природе не соответствующие условиям существования.

По силе пороговые – наименьшая сила, которая вызывает ответную реакцию.

Подпороговые – ниже порогов. Надпороговые – выше порогов, иногда губительные для организма.

Раздражимостью обладает как растительная, так и животная клетки. По мере усложнения организма у тканей возникает способность отвечать возбуждением на раздражитель (возбудимость). Возбудимость – это ответ данной клетки или организма, сопровождаемый соответствующим изменением обмена веществ. Возбуждение проявляется, как правило, в специальной форме, характерной для этой ткани – мышечные клетки сокращаются, железистые – выделяют секрет, нервные – проводят возбуждение.

Одной из форм существования живого является движение .

Специальные опыты показали, что животные, выросшие в условиях гиподинамии, развиваются слабыми по сравнению с животными, двигательный режим которых был достаточным.

Пример: неодинаковая продолжительность жизни животных с различной двигательной активностью.

* Кролики – 4 – 5 лет

* Зайцы – 10 – 15 лет

* Коровы – 20 – 25 лет

* Лошади – 40 – 50 лет

Роль двигательной активности в жизни человека очень велика.

Это особенно отчетливо видно сейчас, в век научно-технического прогресса. За последние 100 лет доля мышечных усилий во всей выработанной человечеством энергии сократилась с 94 % до 1 %. Продолжительная гиподинамия снижает работоспособность, ухудшает приспособляемость к факторам окружающей среды, способность противостоять заболеваниям.

Вопросы для самоподготовки:

Перечислить разновидности мышечных клеток, описать их строение.

2. Охарактеризовать изменения, происходящие в мышечных клетках под влиянием тренировки.

Описать функции белков мышечных клеток.

4. Раскрыть строение и функции нервных клеток.

5. Объяснить понятия «раздражимость», «возбудимость».

Лекция 5.

Похожая информация:

Поиск на сайте:

Нервная система состоит из множества нервных клеток - нейронов. Нейроны могут быть различной формы и величины, но обладают некоторыми общими особенностями.

Все нейроны имеют четыре основных элемента.

  1. Тело нейрона представлено ядром с окружающей его цитоплазмой. Это метаболический центр нервной клетки, в котором протекает большинство обменных процессов. Тело нейрона служит центром системы нейротрубочек, расходящихся лучами в дендриты и аксон и служащих для транспорта веществ.

    Совокупность тел нейронов образует серое вещество мозга. От тела нейрона радиально отходят два или более отростков.

  2. Короткие ветвящиеся отростки называются дендритами .

    Их функция - проведение сигналов, поступающих из внешней среды или от другой нервной клетки.

  3. Длинный отросток- аксон (нервное волокно) служит для проведения возбуждения от тела нейрона к периферии. Аксоны окружены шванновскими клетками, выполняющими изолирующую роль. Если аксоны просто окружены ими, такие волокна называются немиелинизированными.

    В том случае, если аксоны «обмотаны» плотно упакованными мембранными комплексами, образуемыми шванновскими клетками, ах называют миелинизированными. Миелиновые оболочки белого цвета, поэтому совокупности аксонов образуют белое вещество мозга. У позвоночных животных оболочки аксонов прерываются через определенные промежутки (1-2 мм) так называемыми перехватами Ранвье.

    Диаметр аксонов составляет 0,001-0,01 мм (исключение - гигантские аксоны кальмара, диаметр которых около 1 мм). Длина аксонов у крупных животных может достигать нескольких метров. Объединение сотен идя тысяч аксонов представляет собой пучок волокон - нервный ствол (нерв).

  4. От аксонов отходят боковые ветви, на конце которых располагаются утолщения.

    Это - зона контакта с другими нервными, мышечными или железистыми клетками. Она называется синапсом . Функцией синапсов является передача возбуждения. Один нейрон через синапсы может соединяться с сотнями других клеток.

Нейроны бывают трех видов. Чувствительные (афферентные или центростремительные) нейроны возбуждаются за счет внешних воздействий и передают импульс с периферии в центральную нервную систему (ЦНС).

Двигательные (эфферентные или центробежные) нейроны передают нервный сигнал из ЦНС мышцам, железам. Нервные клетки, воспринимающие возбуждение от других нейронов и передающие его также нервным клеткам, называются вставочными нейронами (интернейронами).

Таким образом, функция нервных клеток заключается в генерировании возбуждений, их проведении и передаче другим клеткам.

Земноводные в науке

2.6 Нервная система

Мозг земноводных имеет простое устройство (Рис. 8). Он имеет удлинённую форму и состоит из двух передних полушарий, среднего мозга и мозжечка, представляющего лишь поперечный мостик, и продолговатого мозга…

4.

Костная ткань

Кость — основной материал опорно-двигательного аппарата. Так, в скелете человека более 200 костей. Скелет является опорой тела и способствует передвижению (отсюда и произошел термин «опорно-двигательный аппарат»)…

Механические колебания. Механические свойства биологических тканей

Сосудистая ткань

Механические колебания.

Механические свойства биологических тканей

7.

Сосудистая ткань

Механические свойства кровеносных сосудов определяются главным образом свойствами коллагена, эластина и гладких мышечных волокон. Содержание этих составляющих сосудистой ткани изменяется по ходу кровеносной системы…

Мукозный иммунитет

1. Лимфоидная ткань слизистых оболочек

Лимфоидная ткань слизистых оболочек состоит из двух компонентов: отдельных лимфоидных клеток, которые диффузно инфильтруют стенки пищеварительного канала…

Общая характеристика и классификация группы соединительной ткани

1.1 Собственно соединительная ткань

Собственно соединительную ткань подразделяют на рыхлую и плотную волокнистую соединительную ткань, а последнюю — на неоформленную и оформленную.

Рыхлая волокнистая неоформленная соединительная ткань…

Особенности строения птиц

Нервная система

Нервная система — интегрирующая и регулирующая система. По топографическим признакам ее делят на центральную и периферическую. К центральной относят головной и спинной мозг, к периферической — ганглии, нервы…

1.

Эпителиальная ткань

Эпителиальная ткань — это ткань, выстилающая поверхность кожи, роговицы глаза, серозных оболочек, внутреннюю поверхность полых органов пищеварительной, дыхательной и мочеполовой системы, а также образующая железы…

Особенности строения, химического состава, функции клеток и тканей животных организмов

2. Соединительная ткань

Соединительные ткани — это комплекс тканей мезенхимного происхождения, участвующих в поддержании гомеостаза внутренней среды и отличающихся от других тканей меньшей потребностью в аэробных окислительных процессах…

Особенности строения, химического состава, функции клеток и тканей животных организмов

3.

Мышечная ткань

Мышечные ткани — ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Состоят из вытянутых клеток, которые принимают раздражение от нервной системы и отвечают на него сокращением…

Особенности строения, химического состава, функции клеток и тканей животных организмов

3.2 Сердечная мышечная ткань

Источники развития сердечной поперечнополосатой мышечной ткани — симметричные участки висцерального листка спланхнотома в шейной части зародыша — так называемые миоэпикардиалъные пластинки…

2.1.1 Рыхлая неоформленная волокнистая соединительная ткань (РВСТ)

Рыхлая неоформленная волокнистая соединительная ткань — «клетчатка», окружает и сопровождает кровеносные и лимфатические сосуды, располагается под базальной мембраной любого эпителия…

Ткани внутренней среды организма

2.1.2 Плотная волокнистая соединительная ткань (ПВСТ)

Общей особенностью для ПВСТ является преобладание межклеточного вещества над клеточным компонентом…

Филогения систем органов у хордовых животных

Нервная система

Головной мозг состоит из пяти отделов: продолговатого, мозжечка, среднего, промежуточного и переднего.

От головного мозга отходят 10 пар черепно-мозговых нервов. Развиваются органы боковой линии…

Эпителиальная ткань

Эпителиальная ткань

Эпителиальная ткань (эпителий) покрывает поверхность тела, выстилает стенки полых внутренних органов, образуя слизистую оболочку, железистую (рабочую) ткань желез внешней и внутренней секреции. Эпителий представляет собой слой клеток…